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We consider the steady-state transverse oscillations of a homogeneous 
isotropic plate of constant thickness which occupies an arbitrary simply 
connected region. The edges of the plate are assumed to be simply 
supported. The general case of static bending of a plate occupying au 
arbitrary (simply or multiply connected) region was studied before by 
Sherman cl, 21 . The representations of the unknown regular functions pro- 
posed by him were successfully applied in the final stage of the present 
investigation of steady-state oscillations, This way, the problem was 
reduced to the solution of a Fredhoim' s integral equation of the second 
kind. 

1. Let the middle surface of an oscillating plate occupy an arbitrary 
simply connected region S in the complex plane z = x + iy; the origin 
is assumed to be located within the region S. Moreover, we assume that 
the contour L, which bounds the region, has a differentiable curvature. 

In order to find the amplitude of the oscillations u(x, y), it is 
necessary to solve the following differential equation in the region S: 

Here, q(x, y) and v are the amplitude and frequency of oscillations 
of the transverse load, p is the density, h and D are, respectively, the 
thickness and the flexural rigidity of the plate. 

Besides equation (1.1). the amplitude u(x, y) aust also satisfy the 
boundary conditions on the contour L 
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u = 0, l+o + G CO9 0 + $$ sin 20 + $ sin2 0 = 0 (1.2) 

Here, u is Poisson’s ratio and 8 is the angle between the outward 
normal to the contour and the abscissa. 

Let us differentiate the first boundary condition (1.2) twice with 

respect to the contour arc s and add it to the second condition, term 

by term. Let us join the new boundary condition thus obtained and the 

first boundary condition (1.2); we take this set as the new modified 

boundary conditions (obviously, equivalent to the original ones). 

In the complex form they are written down as follows*: 

(1.3) 

where t is the complex coordinate of a point on the contour, the primes 

designate differentiation with respect to the arc S. 

Furthermore, we introduce a new function w(x, y) by the formula 

u (2, Y) = w (r, Y) + w0 (I, Y) - t (4 + w0 (all JO &r,) (I.41 

(ra = V(z - ro)a + (Y - Yo)? 

Here, we(x, y) is the particular solution of the nonhomogeneous equa- 

tion (1.1) and J,,(hr,) is the Bessel function of order zero; moreover, 
a = x0 + iy o is the affix of the fixed point of the contour from which 

the arc length is measured; u)(a) and w,,(a) are the values of functions 

W(X, y) and we(x, y) at point a. Instead of the first boundary equality 

(1.3) let us take the following condition: 

& / 8s + Re q’ (0) = 0 (i-5) 

where q’(O) is the value of the derivative at point I = 0 of a certain 

function q(z) (defined below), regular in the region S. The following 

condition ensues from relation (1.5) f1.21: 

Rev’ (0) = 0 (1.6) 

Indeed, the first term of relation (1.5) is the total differential 
with respect to the arc s of a certain continuous and single-valued 

function: therefore, integrating relation (1.5) with respect to the arc 

s along the closed contour L, and bearing in mind that the function 

* A similar modification of the boundary conditions was used in the 

solution of the.static problem of bending of a simply supported 
plate [l, 21. The purpose of such a modification is explained in [21. 
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u(x, y) is single-valued, we arrive at condition (1.6). Let us note that 

the fulfilment of the last condition will guarantee the solvability of 

the integral equation which will be obtained below. 

We substitute the value of the amplitude u(x, y) from (1.4) into 

equation (1.1). the boundary relation (1.5) and the second condition 
(1.3). As a result, we obtain a homogeneous equation for the auxiliary 

function W(X, y) 

with boundary conditions 

AAw -k’w = 0 (i-7) 

aW / as t: hw (a) J, (A ra) cos 51 + Re cp’ (0) = fl (t) 

G (4 - w (a) G IJo (A pa)1 = fa (4 

(1.8) 

(1.9) 

Here 

fl (t) = - C?Q / as - IWO (a) J, (h ra) cos 52, fi (t) = - G (~0) -1: ~0 (a) G [Jo (hr,)] 

(R is the angle between the vector t - a and the tangent vector to the 

contour L at point t oriented in the positive direction of the contour 

line). Obviously, the function u(x, y) expressed in terms of w(x, y) by 

means of relation (1.4) is the solution of the original problem. Indeed, 

by virtue of (1.7) and (1.9), u(r, y) satisfies the nonhomogeneous equa- 

tion (1.1) and the second boundary condition (1.3). Moreover, it follows 

from relation (1.5) that u(x, y) has a constant value on the contour L. 

In so far as the right-hand side of relation (1.4) becomes equal to zero 

at point 2 = a, we conclude that the function U(X, y) will also satisfy 

the first boundary condition (1.3). 

Note. In the solution of the static problem of bending of a plate, 

the first condition (1.3) may be satisfied up to an arbitrary constant. 

Therefore, it can be replaced by the condition that the derivative of 

the deflection with respect to the contour arc s be equal to zero. Such 

modification leads to a change of solution by a constant in the entire 

region, which corresponds to the rigid displacement of the plate in the 

direction of its normal. However, in the problem of forced os,cillations 

it is necessary to ensure the exact fulfilment of both conditions (1.3); 

in that case, the change of the first boundary condition (1.3) by a con- 

stant results in a change of the solution by a function different from 

constant within the region S. In order to avoid that, one has to intro- 

duce an auxiliary function W(X, y) by means of a specially chosen rela- 

tion (1.4). 

2. Let us proceed to the determination of the function w(z, y). First 

we combine the two real-valued boundary conditions (1.8) and (1.9) into 
one complex equality as follows: 
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g -I- X b) i- w (~1 f3 (4 + Re q’ (0) = i I (t) (3.1) 

Here 

f3 (1) = hJ1 (La) cos 52 - ic [Jo (hr,)], f (t) = 2 If1 (t) + ifa (01 (2.2) 

Let us use the general representation of the solutions (1.7) given 

by Vekua [31 

I 

s 
x (z~) I’, ]z< (1 - %)I dz + 

0 

+Zrp(z)- 2 ST (zz) P, G(1 - ~)l dTj 
0 

(2.3) 

po(x)=.J1(h1/2)--l(h~~) 
4 1/G ( 

pl (x) = Jz (A 6, - I, (1 6, 
2X 

Here, T(Z) and x(z) are arbitrary functions, regular in the region S, 
Ji(AJ x) and Ii(hd X) are, respectively, ordinary and modified Ressel 

functions (i = 1, 2). 

Furthermore, we substitute the derivatives &I/&, &I/&, ~2w/&a; 

from (2.3) into the boundary condition (2.1); we replace the functions 

Pe[zT(l - ~1 and P, [z;(l - T)I by their expansions into series. Thus we 

arrive at the following boundary value problem for the two functions 

q(z) and x(z), regular in the region S: 

T) -t- 
0 

In this boundary 

x (t -) K2 (t, 7) + cp (tz) K, (4 T) + cp (lr) K, (I, <)I dT = j (t) 

condition, the following designations were used: 

__ ~_ 
a (1) zzz t’ - it’, p (t) .:z t” - it’, 7 (0 = cp (t) - tcP’ (t) - $ (t), x’ (L) I $ (0 

a3 (1 - 2)‘( 
Ki (t, 5) z h2 2 ~Aik (t) (i q 2, 2, 3, 4) 

h=a . 

Alk (t) = 
B (47 

x +,+, b, (t) + ak (t) a ct)t 1 
A,, (1) = - 

a (t) t 
X + jJFj b,(t) - a,08 (1)~ 1 

b, (t) = $ (of” [I + (- l)k] 

$ (t) b, tt) 
1 

a,( (tJa (d ~ - X+k+Ij k+2+ kfl 
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It is easy to see that the series Ki(t, -r), under the integral sign, 
are absolutely and uniformly convergent, SO that Ki(t, T) are continu- 
ous functions of t and T. It is a favorable circumstance in this case, 
that all the extra-integral terms of the boundary condition (2.4) are 
generated exclusively by the extra-integral terms of the representation 
(2.3). At the same time it is easy to observe that the extra-integral 
terms of expression (2.3) coincide with Goursat’s representation for 
the biharmonic function. As a result. the first three terms of the bound- 
ary value problem (2.4) formally coincide with the corresponding terms 
of relation (1.7) in [ll . Thus, in the solution of the boundary value 
problem (2.4) one can use representations for the functions cp(z) and 
Y(Z) contained in [ll 

v (4 = j- Iw (%I@, (%I + o(E)& (%,I F (%, 4 dE (2.5) 
1, 

(2.6) 

Here, o(c) is the density which has to be determined. The meaning of 
the other functions contained in (2.5). (2.6) and (2.7) is as follows: 

0, (E) = i + F%“, 8, (j) = - i -+- &,*, 
1 

F (E, 4 = zx [- 1 i- ln(1 -;)I 
-- 

R, (%, 2) = - %‘“6, (5) (5 - 2) F (E, z) + P (%) T (5, z) 

_- 
RI (5, 4 = - %‘a8~ (I;) (E - z) F (E, 4 + 0 (%) T f%, 4 

HI (5, z) = e In (I - ij + p (E) (hz- $), p (%I = 4& t@ - f9ClGl 

ln(l-t)+Q(%)(&--_$j. Q(%~==4~Ix%?-~0~I 

T (%, 2) = - ln(l-$)-J 

Under ln(1 - zt-’ ) we understand a branch which becomes equal to 
zero for z = 0. 

In the representations (2.5). (2.6) and (2.7) and in the expression 
for ‘p’(z) we let z - t, where t is a point on the contour L; we sub- 
stitute the obtained limiting values into equality (2.4). al.50 changing 
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the order of integration. The form of the representations (2.5). (2.6) 

and (2.7) turns out to be such that, upon their substitution into the 
boundary relation (2.4), the ensuing conbinations of integrals in the 

sense of principal value according to Cauchy, lead, as a final result, 

to regular integrals; therefore, for the determination of the density 
o(t) we obtain a Fredholm’s integral equation of the second kind with 

cant inuous kernel s 

+ 0 IO (%), 11 + UJ IO (El, al f.j (1) :.= t (f) (2.8) 

The functions M(c, t) and iv{<, t) appearing here, completely coincide 

with the kernels of the integral equation of the statical problem for a 

simply connected region, and the operator Of&(<), tl coincides with the 

corresponding operator of the statical problem f1I 

;I1 (%, Q = vl (E, 9 + 4 (E, 4 ’ In =--- 
5-t 

d% %-j+ 

P (El t) 
--g-y + tiltI%, t) (2.9) 

VI (5, 0 = 7eT-a a (%, t) - Eve,(t) b (%, 1) 

-- 
1’2 (%, t) = t’6, (I) b (E, t) - pf 0% (t) a (%, t) 

1 
E=GiG;, {eJ (E!) ]xE’ - Wa(S)l -to(E) IxE’ -- ge, (Q]) -y c 

It is clear that if the curvature of the contour .L is differentiable, 

the function p(<, t) (2.16) for 5 = t has a zero of the first order, 
and the third terms in (2.9) are bounded functions of 2 and t. 
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The additional terms bf,(E, t) and Nl(c, t) are given by the follow- 
ing rapidly convergent series: 

(2A2) 

The values of EZkf “(5, t) ( i = I, 2, 3) are given by the integrals 

B,(l) (E, t) e= \ (1 - z)“R, (E, 12) dz, B,‘2’ (5, t) = i (1 - z)% (5, tz) dz 

ii 0 

1 
(2.13) 

Bkf3) fE, 1) = 
s 

(I - QF (5, tz) d? 

0 

Carrying out the integration with respect ta r in (2.13) we will have 

and the quantities which appear here are 

B,(& f) = (1 -+-)k”{k+‘“(’ --+ e (&[(--t)+- i;-i)“-‘]i 
j-o 

The functional w[o($), a1 (equal to the value of function 1u(x, y) at 
point t = a) contained in (2.8) is defined by formula (2.3) for z = a. 

Let us now discuss the solvability of the integral equation (2.8). 
Following the method shown in [41, we wdll utilize the proof of solv- 
ability of the integral equation for the corresponding statical problem 
given in Cd. It follows from the relations for M,(& t> and N1(c, t) 
given above, that the kernels of equation (2.8) are integral functions 
of the parameter h. For h = 0 the functions Mlft, t), N,($, t) and fg(tf 
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vanish and the integral equation (2.8) becomes coincident with the equa- 
tian of static bending of a plate mentioned above. Hence, by virtue of 
the theorem of Tamarkin [53, there follows the solvability of the inte- 
gral equation (2.8) for almost all values of the parameter h. 

In the case where h does not coincide with the pole of the resolvent 
of equation (2.8). we first find the density a(t) from (Z-8); then from 
relations (2.5). (2.6), (2.7) and (2.3) we successively determine the 
functions q)(z), x(z), y(z) and w(x, y). 

3. The particular solution we{%, y) of the nonhomogeneous equation 
(1. I), containing an arbitrary differentiable function q(x, y) on the 
right-hand side, can be taken in the following form: 

Here 

Y (b) = Yo(Lr) - J* (A?) (In + + c) -$ 

K (A?) = K* (ar) + 1, (kr) (In + + $) 

(F = V(s - UP + b - n)“) 

Ye@) and K,(hr) are, respectively, ordinary and modified Bessel func- 
tions of the second kind, and C is Euler’s constant. The integration is 
carried out over the region S in which the distributed load is given. 

Rearing in mind that the expression in square brackets under the 
integral sign in (3.1) for r - 0 has a singularity of the type r* In r, 

we easily verify that the function we(x, y) does Satisfy the non- 
homogeneous equation ( 1.1) a 

The particular solution, taken in the form (3.1). allows a passsge 
to the limit for h - 0. Thus we obtain the particular solution of the 

nonhomogeneous biharmonic equation 

3 
fllur---‘= dEdrl ) 

In conclusion I express my appreciation to D.I. Sherman for his 
steady attention to this paper and for valuable suggestions. 
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